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Abstract 

In aeronautics, plan continuation error (PCE) represents failure to revise a flight plan 

despite emerging evidence suggesting that it is no longer safe. Assuming that PCE may be 

associated with a shift from cold to hot reasoning, we hypothesized that this transition may 

result from a large range of strong negative emotional influences linked with the decision to 

abort a landing and circle for a repeat attempt, referred to as a “go-around”. We investigated 

this hypothesis by combining functional neuroimaging with an ecologically valid aviation task 

performed under contextual variation in incentive and situational uncertainty. Our goal was to 

identify regional brain activity related to the sorts of conservative or liberal decision-making 

strategies engaged when participants were both exposed to a financial payoff matrix 

constructed to bias responses in favor of landing acceptance, while they were simultaneously 

experiencing maximum levels of uncertainty related to high levels of stimulus ambiguity. 

Combined with the observed behavioral outcomes, our neuroimaging results revealed a shift 

from cold to hot decision making in response to high uncertainty when participants were 

exposed to the financial incentive. Most notably, while we observed activity increases in 

response to uncertainty in many frontal regions such as dorsolateral prefrontal cortex 

(DLPFC) and anterior cingulate cortex (ACC), less overall activity was observed when the 

reward was combined with uncertainty. Moreover, participants with poor decision making, 

quantified as a lower discriminability index d’, exhibited riskier behavior coupled with lower 

activity in the right DLPFC. These outcomes suggest a disruptive effect of biased financial 

incentive and high uncertainty on the rational decision-making neural network, and 

consequently, on decision relevance. 
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1. Introduction 

Functional brain imaging allows investigation of the neural mechanisms underlying 

phenomena that occur during complex real life activities. Examples are seen in aeronautics 

research, where different studies have identified specific neural activity patterns (Callan, et 

al., 2012; Caldwell et al., 2005; Menda et al., 2011; Peres et al., 2000) or regional brain 

volume variations related to piloting performance (Adamson et al., 2010). Results from these 

studies can indicate possible causal factors related to accidents, may be helpful in refining 

pilot selection and training criteria, and can assist safety boards in developing policy 

recommendations for airlines. Functional neuroimaging methods could be particularly useful 

in understanding the neural mechanisms underlying plan continuation error (PCE), known as 

failure to revise a flight plan despite emerging evidence suggesting that it is no longer safe 

(Orasanu, Ames, Martin, & Davison, 2001). In such risky situations, the pilot may decide to 

perform a go-around or execute a diversion if indicated. However, a famous study conducted 

at MIT (Rhoda & Pawlak, 1999) demonstrated that, in 2000 cases of approaches performed 

under thunderstorm conditions, two aircrews out of three continued the flight plan and 

erroneously persisted with approach and landing. While several cognitive theories have been 

proposed to explain this result (Causse, Dehais, Arexis, & Pastor, 2011; Causse, Dehais, & 

Pastor, 2011; Goh & Wiegmann, 2002), it may be that PCE is favored by strong negative 

emotions associated with the decision to revise the flight plan. These negative emotional 

consequences could adversely alter a pilot’s rational reasoning by biasing decision-making 

criteria, thereby unconsciously affecting their risk assessments and the subsequent course of 

action chosen. Indeed, a forced go-around, by increasing uncertainty and destabilizing the 

pilot’s emotional state, may lead to great difficulties in reinserting the aircraft back in the 

traffic pattern. Moreover, a go-around has important financial consequences for airlines due to 



its attendant extra fuel consumption. One now defunct airline formerly paid passengers one 

dollar for each minute their flight was late, until a crew attempted to land through a 

thunderstorm and crashed (Nance, 1986). It is assumed that pilots frame their decision to 

continue landing in terms of potential losses (O' Hare & Smitheram, 1995), such as increased 

anxiety, money spent on fuel consumption, or flight delays. In this context, pilots may be 

willing to take safety risks to avoid possible losses related to late arrival. Indeed, Kahneman 

and Tversky’s behavioral economical theory (1979) demonstrated that people are particularly 

biased towards risk taking when faced with the prospect of losses. 

It is widely accepted that emotion can jeopardize decision-making relevance or risk 

assessment, especially in highly uncertain situations (Damasio, 1994) and during complex 

tasks that involve dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) 

(Qin, Hermans, van Marle, Luo, & Fernández, 2009; Schoofs, Preuss, & Wolf, 2008). 

Neuroeconomic studies have explored the effects of monetary reward and punishment on 

cognition. For instance, Taylor et al. (2004) highlighted the efficiency of financial incentive in 

biasing working memory and object recognition. Dreher, Kohn, & Berman (2006) found that 

reward can hasten decision-making processes. The DLPFC is involved in reasoning and its 

activity is related to reduced risk-taking behavior (Knoch, et al., 2006) and reward probability 

(Dreher, et al., 2006). However, orbitofrontal cortex (OFC), which participates in emotion 

processing, modulates the anticipation of regret linked to financial loss (Coricelli et al., 2005). 

Other work has introduced the concept of ‘hot’ and ‘cold’ reasoning (Goel & Dolan, 2003; 

Schaefer et al., 2003), where ‘hot’ reasoning refers to modulation of reasoning by emotion 

and ‘cold’ reasoning is considered more purely cognitive. Therefore, manipulation of rewards 

and punishments may interfere both with cognition and emotion, suggesting that a parallel 

could be drawn between neuroeconomic study tasks and the decision making contexts in 



which pilots are placed in conflict between conditions of punishment, involving extra fuel 

consumption or fatigue caused by a second landing attempt, and reward, involving delivering 

passengers without delay. 

Our hypothesis is that PCE may be a consequence of a shift from cold to hot reasoning. 

This transition may result from a large range of strong negative emotional consequences 

linked with the decision to undertake a go-around when uncertainty is high. In this 

perspective, hot reasoning is less rational from a safety viewpoint and integrates modulatory 

emotional influences. In this study, we investigated this hypothesis with a simplified, but 

plausible, landing task based on the standard cockpit instrument landing system (ILS), using 

functional magnetic resonance imaging (fMRI) to estimate changes in brain activity related 

either to the type of incentive (neutral or financial) or the level of uncertainty (low or high). 

Our analysis focused on identifying brain regions involved in decision-making (conservative 

vs. liberal strategies) when participants were both exposed to a financial payoff matrix, 

constructed to bias responses in favor of landing acceptance, under conditions of maximum 

levels of uncertainty induced by high stimulus ambiguity. 

 

2. Methods 

2.1.  Participants 

Fifteen young physically and psychiatrically healthy participants were recruited from the 

local community to participate in the experiment (mean age = 25.4 years, SD = 2.45; mean 

education level = 16.68 years of schooling, SD = 1.95). All were right-handed as measured 

using the Edinburgh handedness inventory (Oldfield, 1971). Due to their influence on 

decision-making processes, emotional profiles were quantified using impulsivity and anxiety 



assessments with the Italian version of the Barratt Impulsiveness Scale (BIS-11) (Fossati, Di 

Ceglie, Acquarini, & Barratt, 2001) and the Italian version of the Spielberger Trait Anxiety 

Inventory (STAI form Y-2) (Spielberger, Pedrabissi, & Santinello, 1996). Impulsivity was 

estimated from the mean of the motor, cognitive and non-planning impulsivity subscales. 

Both impulsivity and trait anxiety levels were within the normal range for all participants 

(Fossati, et al., 2001; Spielberger, et al., 1996) (respectively, mean = 60.50, SD = 8.95; mean 

= 41.50, SD = 4.03). Participants gave informed consent before participation. They were paid 

and were told that they would earn extra money according to their task performance. 

Participants were also told that they would earn a percentage of the amount of money 

presented on the screen after each response. Eventually, for ethical reasons, all participants 

won the maximum amount of money. 

 

2.2.  Experimental paradigm 

We used a 2x2 factorial design crossing two independent variables, financial incentive and 

uncertainty. The task was based on simplified reproduction of a real flight instrument 

featuring a 480x480 pixel display. This instrument supports the pilot’s decision-making 

during landing without external visibility. Participants were instructed that they would be 

flying a plane that had reached the decision altitude, that is, the point of the approach where 

the pilot must decide if the landing has to be aborted or not. At that time they would be 

allowed to defer landing if they believed that it was unsafe. Decisions were based on two 

elements of the ILS: localizer and glide, which respectively provide lateral and vertical 

guidance to adjust the trajectory of the aircraft relative to the runway. The information was 

given by two rhombi, displayed below and on the right of the artificial horizon, as in a real 

aircraft (Figure 1).  



 

Figure 1. Simplified reproduction of the decision-making environment during the 

landing phase. In the upper part, the real environment. From left to right: the real 

cockpit, a zoomed view of the main instrument panel showing the ILS and the 

throttle. In the bottom part, the experimental environment is shown. From left to 

right are shown: the simplified main instrument with only the two rhombi of the ILS 

(in white) and the response pad using to signal the results of the decision to land or 

to perform a go-around. 

 

Participants were reminded that landing was safe when both rhombi were close to the 

center of their respective axis and that as the rhombi moved farther from the center, the risk of 

crash increased. Participants were asked to be aware of the great importance of flight safety. 

Landing situations were manipulated according to low and high levels of uncertainty, indexed 

by the level of information ambiguity provided by the ILS instrument (Figure 2). 

 

Figure 2. Categorization of the level of uncertainty according to the rhombus 

positions. The rhombi positions were counterbalanced to avoid laterality effects. The 

order of presentation of the stimuli was randomized for each run. 



In the landing condition without uncertainty, decision making was straightforward: either 

the rhombi were very far from their respective centers, requiring a go-around (likelihood of 

successful landing: 0%), or they were very close, requiring landing acceptance (likelihood of 

successful landing: 100%). In landing conditions with high uncertainty, rhombi had borderline 

positions (not very far or very close to the center) and the likelihood (unknown to the 

participants) of a successful landing or a crash, was 50%. Within a run, there was no 

repetition of the same rhombus pattern. These changes in uncertainty level reduced stimulus 

habituation and promoted a sustained high level of reasoning throughout the experiment.  

Two runs (1 run = 40 trials) were presented in each condition: neutral or financial. For 

each trial, the participants indicated their choice (landing or no landing) by pressing a button 

on the response pad. After each response, the participants received feedback concerning 

response accuracy (OK, for a successful landing or a justified go-around; NO, for an 

erroneous decision to land or an unjustified go-around). During the financial incentive 

condition, negative emotional consequences associated with a go-around were induced using 

a visual payoff matrix (Figure 3). In the high uncertainty condition, feedback (successful 

landing or crash) was randomized. 

 

Figure 3. The various feedback screens displayed after each decision. Without 

incentive, only the accuracy feedback was delivered (OK/NO), with financial 

incentive, the monetary consequences were also displayed after the accuracy 

feedback. 



This payoff matrix was designed to bias responses in favor of landing acceptance. A go-

around was systematically punished with a financial penalty. The penalty was less important 

(-2€) when the go-around was justified than when it was unjustified (-5€). This systematic 

punishment of the decision to go-around reproduced the sorts of systematic negative 

consequences encountered in real life. While successful landing was rewarded (+5€), an 

erroneous decision to land was punished (-2€). While the fact that the erroneous decision to 

go-around was more severely punished than the erroneous decision to land may appear 

counterintuitive, the matrix was constructed in this way for several reasons. First, during real 

flights, pilots know that crash and overrun are rather unlikely events, whereas the negative 

consequences associated with a go-around are systematic. The analysis of unstabilized 

approaches confirms that accidents are rather rare in spite of frequent risk taking (Rhoda & 

Pawlak, 1999). Interestingly, Kahneman and Tversky (1979) demonstrated that people are 

particularly risk seeking when faced with the prospect of losses. Second, introducing very rare 

events would have been problematic since low numbers of repetitions of given experimental 

conditions might not provide sufficient statistical power to detect the regional effects of 

interest. For these reasons, we were compelled to modulate the weight of the punishment 

rather than its frequency. At the end of each run, a global feedback “safety score” display 

indicated the percentage of correct responses. Moreover, at the end of the financial run, a 

“financial score” feedback indicated the cumulative amount of money won or loss. These two 

scores are in conflict since the optimization of the “financial score” can only be achieved at 

the expense of the safety score as it necessarily implies a dangerous increase in the landing 

acceptance rate.  

 



2.3. Stimuli presentation 

Stimulus display and data acquisition were controlled with Cogent 2000 v125 and 

MATLAB (Matlab R2006a, The MathWorks, USA). Each trial (Figure 4) consisted of 

presentation of the stimulus for 2.5 s, during which time the participant signaled a decision by 

making a response, followed by a variable delay of 6-10 s, followed by the appearance of the 

response accuracy feedback display for 2 s. During the incentive condition, accuracy 

information was displayed for 0.5 s, followed by financial outcome (+5€, -5€ or –2€) for 1.5 

s. Finally, this was followed by a variable inter-trial interval (ITI) of 3-9 s. The long delay 

before feedback allowed us to distinguish the activity associated with decision making during 

the stimulus presentation from the sustained activity associated with reward expectancies 

during the delay period. The 3-9 s fixation period between trials constituted an implicit 

baseline condition. Before the experiment, participants practiced one neutral and one financial 

run to become familiar with the task and the payoff matrix. 

 

Figure 4. Illustration of the stimuli during the two types of experimental runs: financial and 

neutral. The order in which the runs were performed was counterbalanced across participants. 



2.4. fMRI data acquisition and analysis 

The experiment was conducted at the Radiology Department of the Santa 

Lucia Foundation (Rome). All the data were acquired in a single session on a 3 Tesla Allegra 

MRI system (Siemens Medical Solutions, Erlangen, Germany) with a maximum gradient 

strength of 40 mT/m. We used a standard quadrature birdcage head coil for both RF 

transmission and reception. The fMRI data were acquired using gradient echo EPI, with 38 

axial slices and a voxel size of 3.0 × 3.0 × 3.75 mm (matrix size 64 × 64; FOV 192 × 192 

mm) in ascending order; repetition time 2.47 s; and flip angle 90°. Data analysis was 

performed with SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK). First, data 

were slice time corrected using sinc interpolation and then realigned to correct head motion. A 

mean functional image volume was computed from the realignment step and these mean 

images were normalized to the SPM8 Montreal Neurological Institute (MNI) EPI template 

with affine registration followed by nonlinear transformation. The normalization parameters 

determined for the mean functional volume were then applied to the corresponding functional 

image volumes. Finally, images were smoothed with an 8 mm
3
 isotropic Gaussian smoothing 

kernel. Each participant’s spatially normalized image set was analyzed with a general linear 

model, using 12 experimental regressors, a 128 sec high-pass filter, 3 events (at choice, at 

delay, and at feedback) x 4 conditions per event (level of uncertainty * type of incentive), 

each convolved with a canonical hemodynamic response function. For each participant, the 

four experimental conditions were contrasted with the implicit fixation baseline. At the 

second level, individual images of contrast parameters were entered into a mixed-effects  

repeated measures, factorial model with three factors, subject, incentive (two levels), and 

uncertainty (two levels). 



All planned analysis focused on the decision making period (“at choice’) in each trial, 

(Figure 4). Contrasts were calculated for uncertainty (high vs. low) and incentive (financial 

vs. neutral) as main effects along with their associated interaction terms. To obtain anatomical 

labels, the location of activity peaks were summarized as local maxima and then converted 

from MNI to Talairach coordinate space using an MNI-to-Talairach transformation algorithm 

(Lancaster et al., 2007). These coordinates were used to determine the nearest gray matter 

label using the Talairach Daemon version 2.4.2 (Lancaster et al., 2000) and were reported in 

Talairach space. Statistical parametric maps were overlaid onto a reference brain using xjview 

(http://www.alivelearn.net/xjview8/). 

For examination of the task vs. baseline effects for high uncertainty in a neutral context 

([Neutral_High]), the critical threshold significance was set at p < 0.0001 with FDR correction 

at the whole-brain level. For additional protection against false-positives, only clusters > 

337.5 mm
3
 (10 voxels) are reported. We next examined the weaker between-condition effects 

at p < 0.005, not corrected for multiple comparisons. Last, we used small volume correction 

(SVC) with multiple comparisons controlled at p < 0.05 (family-wise error) for a priori 

anatomical ROIs previously found to be modulated consistently in previous functional 

neuroimaging studies of decision-making under uncertainty and reward processing (Callan, et 

al., 2009; Coricelli et al., 2005; Platt & Huettel, 2008; Qin, et al., 2009; Rauss, Pourtois, 

Vuilleumier, & Schwartz, 2012). These regions were identified using anatomical masks 

created using the WFU PickAtlas Tool, Version 2.4 (Maldjian, Laurienti, Kraft, & Burdette, 

2003) and included medial prefrontal gyrus (BA6), DLPFC (BA9), ACC (BA 24 and 32), 

OFC (BA 11 and 47), the striatum, and visual cortex (BA17, BA18, BA19). A separate mask 

was created for each ROI, and small volume searches were performed for each region. Effect 

sizes (Cohen's D) were calculated by transforming t-maps into effect size maps using the 



SPM8 Volumes Toolbox. Clusters exceeding a threshold of p < 0.005 (uncorrected for 

multiple comparisons) at the whole-brain level are also reported.  

  

2.5.  Behavioral data analysis 

All behavioral data were analyzed with Statistica 7.1 (StatSoft ©). Mean response times 

(RT) and percentage of landing acceptance were calculated for each experimental condition. 

The effects of the type of incentive (neutral vs. financial) and the level of uncertainty on RT 

and the percentage of landing acceptance were examined with a two-way 2 * 2 (type of 

incentive * level of uncertainty) repeated measures ANOVA. Tukey’s honestly significant 

difference (HSD) post hoc test was used to examine paired comparisons. In order to further 

analyze neural activity relationships with behavior, we then calculated an individual 

discriminability index (d’) with signal detection theory equations for the financial condition 

with high uncertainty. This metric give a reliable indicator on participant’s decision-making 

criterion which is the standardized difference between hit rate and false alarm rate 

distributions. 

 

3. Results 

3.1.  Behavioral results 

 Reaction times 

Repeated measures ANOVA revealed a main effect of uncertainty on RT (F(1, 15) = 

40.25, p < 0.001, η²p = .73). High uncertainty generated longer mean RT compared to low 

uncertainty (respectively: 1223 ms, SE = 60.90; 980 ms, SE = 35.09). In addition, the 



ANOVA revealed a main effect of the type of incentive on the RT (F(1, 15) = 13.58, p = 

0.002, η²p = .48). During the financial condition, RTs were shorter than during the neutral 

condition (respectively: 1064 ms, SE = 41.40; 1139 ms, SE = 51.94). There was an interaction 

between the level of uncertainty and the type of incentive (F(1, 15) = 9.19, p = 0.008, η²p = 

.38). When uncertainty was high, participants were quicker to make a decision under the 

financial pressure (HSD < 0.001), whereas RTs remained quite stable when uncertainty was 

low (HSD = 0.985). 

Landing acceptance and discriminability index d’ 

The magnitude of the mean total outcome was positive (+34.5€, SD = 57.7), confirming 

that the reward biased decision making toward economic optimization. A perfectly unbiased 

decision would have led participants to receive a markedly negative outcome (-140€). We 

first roughly calculated the overall proportion of landing acceptance for each of the four 

experimental conditions. The ANOVA showed that there was a main effect of the type of 

incentive (F(1,15) = 57.41, p < 0.001, η²p = .79) and  level of uncertainty (F(1,15) = 19.93, p 

< 0.001, η²p = .57) on landing acceptance. An incentive * level of uncertainty interaction was 

also found (F(1,15) = 5.07, p = 0.039, η²p = .27), showing that the effect of the financial 

incentive only occurred when uncertainty was high (HSD < 0.001). The higher landing 

acceptance rate occurred during the financial with high uncertainty condition. As expected, in 

response to the asymmetric payoff matrix, participants exhibited a significant shift in the 

likelihood of making an affirmative response. The shift meant that participants were willing to 

experience higher false alarms (land in a go-around stimulus) to achieve more hits and avoid 

miss (go-around in a landing stimulus). This shift was the intended result of the payoff matrix, 

set up to bias responses with financial incentive and high uncertainty. In accordance with our 

expectations, the lower d’ was found during the rewarded condition with high uncertainty 



(2.51, SD = 0.72). Whereas the financial incentive did not affect d’ index in the neutral 

condition (p = 0.966), the introduction of the reward/penalty system affected d’ index in the 

highly uncertain context (F(1,14) = 8.79, p = 0.010, η²p = .38). 

3.2.  Neuroimaging results 

Task effect 

We first identified the voxels that were active at choice with high uncertainty in neutral 

context ([Neutral_High]) versus rest condition. This analysis allowed us to examine the 

overall effect of task on brain activity. Table 1 summarizes these results. Notably, activity foci 

were found in frontal regions including the DLPFC and the ACC. Activity in the insula and 

the thalamus was also observed, see Figure 5. 

 

Figure 5.  The main task effect was examined by contrasting the high uncertainty condition in the neutral 

context against the implicit baseline. Notably, the figure shows foci of activity in the right DLPFC, the ACC and 

visual cortex, with activity peaks in the middle occipital gyrus. 

 



Table 1. Task effect  revealed by contrasting the high uncertainty condition in the neutral context against the 

implicit baseline. Activity peaks occurring in clusters of ten or more contiguous voxels (p < 0.0001 FDR) are 

reported. 
a
Cohen's D measure of effect size 

Brain regions Side BA Talairach 

Coordinates 

t-score z Effect 

sizea 

k 

   x y z     

Inferior frontal gyrus (DLPFC)  L 9 -48 6 28 9.48 6.89 2.80 57 

 R 9 48 9 25 20.68 ∞ 6.24 445 

 R 47 33 25 0 13.08 ∞ 3.94 157 

Anterior cingulate gyrus R 32 6 21 38 14.39 ∞ 4.33 504 

Middle occipital gyrus R 19 33 -79 21 19.63 ∞ 6.02 4381 

Insula L 13 -33 17 8 12.66 ∞ 3.81 68 

 R 13 33 22 3 10.42 7.28 3.56 101 

Thalamus L N/A -9 -15 7 10.45 7.30 3.15 28 

 R N/A 9 -12 7 9.06 6.71 2.74 11 

 

Main effects of the high level of uncertainty 

We examined the main effect of the high vs. low uncertainty with an analysis that included 

both types of incentive ([High vs. Low]). Notably, decision making under high uncertainty 

was associated with increased anterior activity, in DLPFC, ACC, and medial frontal gyrus 

(premotor cortex). Parietal (superior parietal lobule) as well as occipital cortices also showed 

enhanced activity. In addition, bilateral activity was observed in the putamen (Figure 6 and 

Table 2). The opposite contrast ([Low vs. High]) yielded no significant effects. 

 

Figure 6.  Main effect of high vs. low uncertainty. (A) Foci of activity in the right DLPFC and in the (B) 

putamen. Both foci survived SVC, p < 0.05 FWE. 



Table 2. Main effects of high vs. low uncertainty in activity peaks from clusters of ten or more contiguous 

voxels (p < 0.005 uncorrected). 
a
Cohen's D measure of effect size. 

b
Survived SVC (p < 0.05 FWE).  

Brain regions Side BA Talairach 

Coordinates 

t-score z Effect 

sizea 

k 

   x y z     

Middle frontal gyrus L 10 -39 46 10 2.96 2.81 0.90 18 

 R 8 27 16 44 2.90 2.46 0.89 10 

Inferior frontal gyrus (DLPFC) L 9 -33 6 25 3.19 3.00 1.07 80 

Inferior frontal gyrus (DLPFC)
b
 R 9 46 15 22 4.26 3.86 1.28 272 

Anterior cingulate gyrus
b
 R 24 9 21 25 4.00 3.66 1.20 48 

Anterior cingulate gyrus L 32 -6 19 41 3.59 3.33 1.08 42 

Medial frontal gyrus L 6 -21 4 48 4.25 3.86 1.28 16 

 R 6 21 4 50 3.69 3.42 1.06 24 

Postcentral gyrus R 2 50 -28 38 3.45 3.22 1.03 23 

Superior parietal lobule L 7 -24 -63 40 3.86 3.55 1.18 168 

Middle temporal gyrus L 37 -45 -59 1 3.22 3.02 0.97 20 

 L 21 -59 -4 -4 3.01 2.85 0.92 29 

Inferior temporal gyrus R 19 54 -68 -3 3.66 3.39 0.92 47 

Precuneus R 19 30 -78 35 3.39 3.17 1.03 51 

 R 7 24 -51 42 3.32 3.11 0.99 74 

Middle occipital gyrus L 19 -33 -88 16 3.11 2.93 0.93 42 

Lingual gyrus R 17 24 -88 0 3.06 2.89 0.92 21 

Posterior Cingulate gyrus L 30 -15 -53 9 3.15 2.97 0.97 32 

 R 23 12 -29 24 3.08 2.91 0.93 11 

Parahippocampal gyrus R 30 15 -45 3 3.23 3.03 0.98 49 

Putamen
b
 L N/A 18 11 -5 4.28 3.88 1.28 42 

Putamen
b
 R N/A -15 8 -2 4.03 3.69 1.23 49 

Thalamus R N/A 21 -12 18 3.92 3.60 1.19 60 

Medial dorsal nucleus R N/A 9 -18 7 3.27 3.07 1.00 23 

 

Type of incentive and level of uncertainty interactions 

We first examined the interaction between financial condition and level of uncertainty. 

Interestingly, the results revealed activity in the caudate body (Z = 2.95). Following the 

behavioral results that showed a change in response to high uncertainty and financial incentive, 

we examined the effect of high vs. low uncertainty when no financial pressure influenced the 

participant’s decision ([Neutral_High vs. Neutral_Low]). The dorsal ACC demonstrated 

enhanced activity (Figure 7.A) as did several frontal areas, including DLPFC and precentral 

gyrus (Table 3.A). Consistent with the analysis of the main effect of high uncertainty, occipital 

and parietal regions also showed enhanced activity. The opposite contrast ([Neutral_Low vs. 

Neutral_High]) showed no significant effects.  



We then examined the areas responsive to uncertainty in the financially motivated condition 

([Financial_High vs. Financial_Low]). A first obvious result was the cortical activity pattern 

revealed by this contrast in comparison to the effect of uncertainty without financial pressure. 

These regions included ventral ACC, putamen (Figure 7.B), caudate body, thalamus and 

brainstem (Table 3.B). The opposite contrast ([Financial_Low vs. Financial_High]) revealed 

no significant effects.  

Finally, the examination of the financial vs. no financial incentive during conditions of high 

uncertainty ([Financial_High vs. Neutral_High]) revealed less activity in comparison to high 

vs. low uncertainty in the neutral condition. This analysis revealed several regions important to 

visual attention (visual cortex and pulvinar) and one moderate focus in the superior frontal 

gyrus (Table 3.C). 

 

Figure 7. Effects of high vs. low uncertainty during neutral incentive, activity in the dorsal ACC (survived SVC, 

p < 0.05 FWE). (B) Effects of high vs. low uncertainty during financial incentive, activity in the putamen 

(survived SVC, p < 0.05 FWE). 



 

Table 3. (A) Effects of high vs. low uncertainty during neutral incentive; (B) Effects of high vs. low uncertainty 

during financial incentive; (C) Effects of financial vs. neutral incentive under high uncertainty.  Peaks occurring 

in clusters of ten or more contiguous voxels (p < 0.005 uncorrected) are reported. 
a
Cohen's D measure of effect 

size. 
b
Survived SVC (p < 0.05 FWE).  

Brain regions Side BA Talairach 

Coordinates 

t-Score z Effect 

sizea 

k 

   x y z     

(A) High vs. low uncertainty during neutral incentive 

Inferior frontal gyrus (DLPFC) R 9 48 15 25 3.13 2.95 0.93 26 

Superior frontal gyrus R 6 24 8 53 3.27 3.07 0.98 15 

Middle frontal gyrus L 10 -33 47 18 3.53 3.29 1.04 11 

Anterior cingulate gyrus R 24 3 0 29 2.95 2.80 0.89 17 

Anterior cingulate gyrus
b
 L 32 -18 10 47 4.10 3.74 1.24 78 

 L 32 -9 32 21 3.17 2.98 0.95 11 

Precentral gyrus L 6 -33 3 23 3.99 3.65 1.21 179 

Inferior parietal lobule L 40 -39 -31 36 3.71 3.43 1.08 60 

Superior temporal gyrus R 22 60 5 -7 3.19 3.00 0.97 17 

 R 19 45 -79 21 2.98 2.82 0.67 19 

Precuneus L 7 -24 -63 37 3.60 3.34 1.08 66 

Precuneus L 7 -21 -51 45 3.57 3.32 1.05 13 

Precuneus
b
 R 19 30 -81 35 4.24 3.84 1.27 80 

Claustrum L N/A -21 20 14 3.33 3.12 0.99 12 

Caudate body R N/A 12 17 11 3.24 3.04 0.99 13 

(B) High vs. low uncertainty during financial incentive 

Middle frontal gyrus (DLPFC) L 9 -27 21 30 3.40 3.18 0.83 10 

 L 46 -42 30 24 3.34 3.13 1.01 27 

 R 9 48 15 22 3.22 3.03 0.96 19 

Anterior cingulate gyrus R 24 9 21 25 3.26 3.06 0.96 10 

Putamen
b
 L N/A -18 13 -2 3.34 3.13 1.00 33 

Putamen
b
 R N/A 18 11 -5 3.43 3.20 1.02 21 

Caudate body
b
 L N/A -9 23 11 3.47 3.24 1.06 94 

Thalamus R N/A 21 -15 7 3.30 3.10 0.99 14 

Brainstem R N/A 3 -32 -33 3.37 3.15 1.01 23 

(C) Effects of financial vs. neutral incentive under high uncertainty 

Superior frontal gyrus L 10 -30 60 -2 3.34 3.12 1.01 10 

Middle occipital gyrus R 19 50 -71 -6 3.18 3.00 0.87 22 

Lingual gyrus L 19 -27 -59 -1 3.00 2.84 0.90 11 

Lingual gyrus L 18 -21 -94 -5 3.71 3.43 1.09 51 

Cuneus R 18 27 -97 1 3.25 3.06 0.92 21 

Pulvinar L N/A -3 -33 8 3.33 3.12 1.01 57 

 

Neural activity associations with d’ discriminability index 

To explore relationships between brain activity sample effect sizes and behavior, we 

identified the brain regions related to participants’ discriminability index d’ when decision 

making was performed under conditions of high uncertainty and financial incentive 

([Financial_High]). Notably, this analysis revealed a positive correlation with DLPFC activity 

as well as middle frontal gyrus, post central gyrus and visual cortex (Figure 8.A and Table 



4.A). Figure 8.B illustrates the association between activity parameter estimates in right 

DLPFC during the financial incentive with high uncertainty condition and individual d’ 

discriminability index measures. To avoid issues related to test non-independence, we 

averaged the activity level in the high uncertainty condition with the financial incentive across 

all ROI voxels in the right DLPFC (BA9) for each participant using MarsBaR (Brett, Anton, 

Valabregue, & Poline, 2002), not only the voxels shown to be correlated with d’ in the 

previous brain behavior correlation analysis. No significant negative correlations were 

observed. 

 

Figure 8. (A) Association between the right DLPFC (BA9) activity and participants’d’ discriminability 

index during the financial incentive with high uncertainty condition. Results survived SVC, p < 0.05 FWE. (B) 

Illustration of the association between the average response in the right DLPFC region (BA9) for each 

participant with their individual d’ discriminability index. 



Table 4. fMRI correlations with individual d’. Peaks occurring in clusters of ten or more contiguous voxels (p < 

0.005 uncorrected) are reported. 
a
Cohen's D measure of effect size. 

b
Survived SVC (p < 0.05 FWE). 

Brain regions Side BA Talairach 

Coordinates 

t-Score z Effect 

sizea 

k 

   x y z     

(A)  (B) Positive correlation with discriminability index (d’) 

Superior frontal gyrus L 11 -36 45 -14 3.76 3.04 2.04 12 

Superior frontal gyrus (DLPFC)
b
 R 9 18 44 29 4.77 3.56 2.59 139 

 R 6 39 7 42 4.68 3.52 2.51 14 

Middle frontal Gyrus R 47 48 42 -6 4.21 3.28 2.27 36 

Supramarginal gyrus L 40 -59 -49 28 4.63 3.50 2.45 24 

 R 40 27 -37 30 4.22 3.29 1.95 37 

Postcentral gyrus L 3 -62 -11 24 4.42 3.39 2.32 81 

Middle temporal gyrus L 37 -45 -59 -1 3.47 2.87 1.86 12 

 R 20 53 -39 -7 4.51 3.44 2.19 21 

Superior occipital gyrus R 19 42 -78 32 5.30 3.80 2.41 18 

Precuneus L 7 -18 -74 46 4.35 3.36 2.30 25 

Cuneus L 19 -12 -78 32 3.59 2.94 1.97 15 

 L 17 -21 -85 8 3.40 2.83 1.86 15 

 

4. Discussion 

Our experiment was designed to explore the neural mechanisms underlying pilots’ tendency 

to land despite bad landing conditions. We investigated the impact of economic pressure, 

namely the cost of a go-around, on risk taking during a plausible landing decision situation. In 

this experiment, both uncertainty and incentive type were manipulated. Our assumption was 

that pilots frame their decision to continue landing in terms of potential losses, such as money 

spent or fuel consumption (O' Hare & Smitheram, 1995). The results tend to confirm the 

intuition that a risky decision to land may be explained by a shift in decision-making criteria. 

Cold reasoning appeared to be more analytic and objective whereas hot reasoning was 

associated with a search for reward at the expense of safety. Importantly, several regions were 

correlated with an important index of participants’ behavior, the discriminability index d’. 



The decision task modulates activity in brain regions involved in high level cognitive and 

emotion processing 

Did our novel task successfully reproduce the mental demands associated by typical 

landing situations? Indeed, the particular landing phase we examined is known to elicit the 

highest workload during a flight (Lee & Liu, 2003). As revealed by the task effect analysis 

(Table 1, Figure 5), the decision conditions we used provoked recruitment of the DLPFC and 

the ACC, two key prefrontal regions associated with various functions such as cognitive 

control, task monitoring, executive functions (Qin, et al., 2009) or error detection (Garavan, 

Ross, Murphy, Roche, & Stein, 2002). This critical point allowed us to extrapolate our results 

to complex real life activities, because effects of emotion on cognition seem to be particularly 

strong for high level cognitive functions engaged during complex decision making involving 

prefrontal cortex (Schoofs, et al., 2008). Our results are consistent with cardiovascular 

measurements obtained in a separate experiment using the same task, where the mean heart 

rate was significantly higher during task performance in comparison to the resting state 

(Causse, Baracat, Pastor, & Dehais, 2011), suggesting that the task generated notable energy 

mobilization and increased mental effort. Interestingly, the ACC has also been implicated in 

driver’s decision making (Callan, Osu, Yamagishi, Callan, & Inoue, 2009), in which 

recruitment of this region was seen when participants were engaged in resolving uncertainty 

during risky driving decision making. This study sheds additional light on the role of ACC 

processes in our simulated aviation task. In addition, the insula is also known to be involved 

in decision-making under uncertainty (Singer, Critchley, & Preuschoff, 2009) and seems 

necessary for advantageous decision-making under risk (Weller, Levin, Shiv, & Bechara, 

2009). Finally, the prominent activity increases in occipital cortex with peaks in the middle 

occipital gyrus and the cuneus were expected given the high visual load generated by the task 



and its associated strong visual-spatial modulation of primary visual cortical areas (Martinez, 

et al., 1999). In this sense, the study of Kéri, Decety, Roland & Gulyás (2004) had previously 

demonstrated that the cuneus is engaged during visual discrimination tasks with uncertainty. 

 

Effects of the high level of uncertainty 

The uncertainty level manipulation generated two types of decision-making. When the 

rhombi positions were non-ambiguous, all participants reported that the decision was 

straightforward. In contrast, when the rhombi positions were ambiguous, the participants tried 

to find a decision rule in a sustained way. These assertions were supported by the observed 

longer RTs when the ambiguity was high. These results were predictable and suggest that low 

uncertainty stimuli were easily categorized and that high uncertainty stimuli tended to 

provoke more difficult decision making. 

Consistent with the behavioral results, the neuroimaging results (Figure 6, Table 2) 

suggest that, in the high uncertainty condition, the task was very demanding and required 

deeper analysis of the stimuli. Indeed the analysis of the main effect of uncertainty showed 

activity increases in the DLPFC (BA9), an area known to be responsive to increases in mental 

workload (Ayaz et al., 2012). The activity observed in the putamen confirms the central role 

of this area in decision making under uncertainty (Platt & Huettel, 2008). This recruitment of 

both the DLPFC and the putamen likely reflected engagement of a prefrontal-subcortical loop 

known to be triggered by decision-making under uncertainty (Onge, Stopper, Zahm, & 

Floresco). 

 



Financial incentive and uncertainty: the shift from cold to hot decision making 

We examined which regions were more active during hot versus cold decision-making in 

an uncertain context. The behavioral results confirmed that participants coped differently with 

the two situations. Whereas high uncertainty stimuli triggered the deepest reasoning, as they 

led to increased reaction times, when the high uncertainty condition was combined with 

financial pressure, the participants showed a shift towards hot decision-making. First, reaction 

times were dramatically reduced, suggesting a lower depth of reasoning before decision-

making. Second, the participants clearly changed their response criteria in favor of economic 

optimization as they made more risky decisions to avoid the risk of a penalty in the case of a 

go-around. This behavior led the participants to a disruption of their discriminability 

performances and provoked more « crashes » (false alarm). This association of financial 

pressure and high uncertainty was a determining factor contributing to increased risk taking in 

our participants. These results were quite comparable of those seen in the neuroeconomics 

study conducted by Taylor et al. (2004) where monetary incentive and task complexity 

negatively influenced short-term memory and increased the number of false item 

recognitions. 

A prominent neuroimaging result in our study was the drastic decrease in active cortical 

regions when the high uncertainty was combined with financial incentive ([Financial_High 

vs. Financial_Low]) (Table 3.B) in comparison to the effect of high uncertainty in the neutral 

context ([Neutral_High vs. Neutral_Low]) (Figure 7, Table 3.A). We notably found foci of 

activity in the putamen and in the caudate body. A study of Critchley et al. (2005) indicated 

that the caudate body activity predicts the observed degree of heart rate increase in response 

to emotional stimuli. Coherently, the separate experiment using the same task revealed that 



the maximum heart rate occurred when the uncertainty was high and the reward administered 

(Causse, Baracat, et al., 2011).  

Interestingly, the condition associated with high uncertainty when no financial pressure 

influenced participant’s decisions elicited enhanced activity in the dorsal “cognitive” 

subdivision of the ACC (BA 32) (Bush, et al., 2000). This region has been reported to be 

active in interference tasks (Taylor, Kornblum, Minoshima, Oliver, & Koeppe, 1994), 

inhibition processes (Derbyshire, Vogt, & Jones, 1998), the detection of conflict (Carter & 

Van Veen, 2007) and the processing of conflicts between competing information streams by 

sensory and/or response selection (Bush et al., 1998). This analysis of the effect of high 

uncertainty in a neutral context also revealed enhanced activity in the precuneus (BA19), 

which was not the case when uncertainty was combined to the financial incentive. This can be 

reasonably interpreted as an increase in top-down regulation resulting in enhanced effort with 

respect to visual attention. A growing number of studies suggest that early visual processing is 

not only affected by low level perceptual attributes, but also by higher order cognitive factors 

such as attention or emotion (Crockford, Goodyear, Edwards, Quickfall, & El-Guebaly, 2005; 

Rauss, Pourtois, Vuilleumier, & Schwartz, 2012). Consistently, Melloni et al. (2012) indicate 

that this type of bottom-up saliency and top-down control regulation may arise from 

interactions with early visual cortex (V1 to hV4).  

In agreement with the prominent decrease in the number of active cortical regions when 

high uncertainty was combined with the financial incentive in comparison to the effect of high 

uncertainty in the neutral condition, contrasting the financial vs. no financial incentive 

conditions in the context of high uncertainty (Table 3.C) revealed fewer regions in 

comparison to the high uncertainty in the neutral context (Table 3.A). No activity survived 

SVC. This outcome brings additional evidence in favor of a disruption of rational decision 



making and a change toward hot decision-making when participants simultaneously faced 

high uncertainty and biased financial incentive. 

Given the variability in participant response profiles, a key goal of our study was to 

examine regions that exhibited associations with participants’ decision-making strategies 

(conservative – cold decision maker - vs. liberal – hot decision maker) when participants were 

exposed to both the financial payoff and maximum levels of uncertainty. Most notably, the 

right DLPFC was positively associated with the individual d’ discriminability index (Figure 8, 

Table 4). This result showed that this related high level cognition region was less recruited by 

participants demonstrating poor discriminability in response to the financial incentive. It is 

very likely that participants who choose to accept landing more frequently were influenced by 

the better mathematical expectancy related to this decision. This change in response criteria 

provoked a shift from cold to hot decision making. The sustained reasoning associated with 

uncertainty, as revealed by frontal activity, was transformed into a straightforward economical 

preprogrammed response strategy, notably resulting in right DLPFC deactivations. This result 

tends to confirm the study of Fecteau et al. (2007) that demonstrated that participants 

receiving transcranial direct stimulation of DLPFC adopted a risk-averse response style 

during ambiguous decision making. In the same way, Knoch et al. (2006) showed that 

disruption of right DLPFC by low-frequency repetitive transcranial magnetic stimulation 

induces risk-taking behavior. Finally, whereas we expected OFC activity, it is worth noting 

that the examination of negative associations revealed no effects in this region. It suggests that 

the observed disruptive effect of reward and uncertainty on discriminability performance is 

mainly provoked by deactivation of several key frontal cortical regions (i.e. DLPFC, ACC), 

rather than by a strong deleterious emotional influence that would have likely generated OFC 



activations (Bechara, Damasio, & Damasio, 2000; Kringelbach, 2005; Coricelli, et al., 2005: 

Li et al., 2009). 

The current study has some limitations that deserve attention. First, the rather small 

sample size (n = 15) may have resulted in identification of effects unique to this particular 

cohort. In addition, small samples tend to have lower statistical power and are therefore more 

likely to identify only strong task effects. Due to the difficulty of recruiting experienced 

pilots, our participants were non-pilots. However, our previous experiment using the same 

tasks (Causse, Baracat, et al., 2011) included 19 pilots who demonstrated a similar behavioral 

pattern, notably an increased number of landing acceptances during the financially motivated 

condition when uncertainty was high. This similar behavior between pilots and non-pilots in 

reaction to financial incentive and uncertainty demonstrates the typical occurrence of the 

mechanism that produces plan continuation error and emphasizes that all people may be 

particularly risk seeking when faced with the prospect of losses (Kahneman & Tversky, 

1979). Finally, before recruitment, participants had a brief interview conducted by a trained 

psychologist, but no specific screening concerning the presence or absence of psychiatric 

disorders. Future studies should include more rigorous clinical experimental control with 

respect to the presence or absence of psychiatric disorders, estimated using structured 

instruments such as the Mini International Neuropsychiatric Interview (MINI) (Sheehan et al., 

1998). 

Despite the above limitations, given the reduced reaction time, the change in response 

behavior, and our neuroimaging results, we conclude that the co-occurrence of high 

uncertainty and the administration of reward provoked a disruption of rational reasoning vs. 

economical reasoning, inducing a change in participant’s motivation from safety constraints 

to economical ones. This shift from cold to hot reasoning offers interesting theoretical 



prospects for aviation safety. PCE could be the result of different aversive negative 

consequences associated with the go-around decision, such as the financial cost for the 

company. The present study confirms the current translational research interest in merging 

cognitive neurosciences with cognitive ergonomics (Sarter & Sarter, 2003), within a 

neuroergonomics approach (Parasuraman, 2003), allowing identification of the underlying 

mechanisms of human error such as PCE. 

 

5. Conclusion 

We examined the neural mechanisms involved in decision-making performed under 

variations in financial incentive and situational uncertainty. Our study incorporated a 

combination of functional neuroimaging with an ecologically valid task performed routinely 

by airline pilots during the landing phase of a flight.  

Though the economical consequences of this task were not comparable with actual flight 

conditions, the payoff matrix we employed was designed to reproduce the negative 

consequences linked with the decision to go-around in a manner efficient enough to provoke 

risky behavior such as PCE. Indeed, it incited our volunteers to maximize their monetary 

reward and biased their response criterion from safety to economic considerations in spite of 

the fact that all participants were told that, as in real life, taking into account flight safety was 

essential in this experiment. Combined with behavioral outcomes, our neuroimaging results 

revealed a shift from cold to hot decision-making in response to uncertainty when financial 

incentive was present. Whereas a large network of key frontal regions, including DLPFC and 

ACC, was observed in response to uncertainty, a different collection, not including these 

frontal regions, was found when biased financial incentive was combined with uncertainty. 

Participants with poor decision-making performance (lower d’) who adopted more risky 



behavior demonstrated lower activity in the right DLPFC. This interesting outcome 

demonstrates that reward and uncertainty can temporarily jeopardize rational decision making 

during complex ecologically valid tasks. 
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